Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain.
نویسندگان
چکیده
Adeno-associated viruses (AAV) are currently being evaluated in clinical trials for gene therapy of CNS disorders. However, host factors that influence the spread, clearance, and transduction efficiency of AAV vectors in the brain are not well understood. Recent studies have demonstrated that fluid flow mediated by aquaporin-4 (AQP4) channels located on astroglial end feet is essential for exchange of solutes between interstitial and cerebrospinal fluid. This phenomenon, which is essential for interstitial clearance of solutes from the CNS, has been termed glial-associated lymphatic transport or glymphatic transport. In the current study, we demonstrate that glymphatic transport profoundly affects various aspects of AAV gene transfer in the CNS. Altered localization of AQP4 in aged mouse brains correlated with significantly increased retention of AAV vectors in the parenchyma and reduced systemic leakage following ventricular administration. We observed a similar increase in AAV retention and transgene expression upon i.c.v. administration in AQP4-/- mice. Consistent with this observation, fluorophore-labeled AAV vectors showed markedly reduced flux from the ventricles of AQP4-/- mice compared with WT mice. These results were further corroborated by reduced AAV clearance from the AQP4-null brain, as demonstrated by reduced transgene expression and vector genome accumulation in systemic organs. We postulate that deregulation of glymphatic transport in aged and diseased brains could markedly affect the parenchymal spread, clearance, and gene transfer efficiency of AAV vectors. Assessment of biomarkers that report the kinetics of CSF flux in prospective gene therapy patients might inform variable treatment outcomes and guide future clinical trial design.
منابع مشابه
The Paravascular Pathway for Brain Waste Clearance: Current Understanding, Significance and Controversy
The paravascular pathway, also known as the "glymphatic" pathway, is a recently described system for waste clearance in the brain. According to this model, cerebrospinal fluid (CSF) enters the paravascular spaces surrounding penetrating arteries of the brain, mixes with interstitial fluid (ISF) and solutes in the parenchyma, and exits along paravascular spaces of draining veins. Studies have sh...
متن کاملParavascular Pathways in the Eye: Is There an 'Ocular Glymphatic System'?
In 2012, Iliff and colleagues proposed the existence of a paravascular transport system, which they termed the ‘glymphatic system.’ We propose that a similar system is present in the eye, the ‘Ocular Glymphatic System,’ and that this may be a key player in retinal diseases ranging from AMD to retinal vasculitis. Healthy brain function is dependent on the regulation of the volume and composition...
متن کاملThe Glymphatic-Lymphatic Continuum: Opportunities for Osteopathic Manipulative Medicine.
The brain has long been thought to lack a lymphatic drainage system. Recent studies, however, show the presence of a brain-wide paravascular system appropriately named the glymphatic system based on its similarity to the lymphatic system in function and its dependence on astroglial water flux. Besides the clearance of cerebrospinal fluid and interstitial fluid, the glymphatic system also facili...
متن کاملDilated Virchow-Robin spaces in primary open-angle glaucoma: a biomarker of glymphatic waste clearance dysfunction?
We read with great interest the article entitled ‘‘Ocular blood flow and cerebrospinal fluid pressure in glaucoma’’ by Promelle et al. (1). The authors review the most recent research on alterations in ocular blood flow and/or cerebrospinal fluid (CSF) flow in glaucoma. They state that blood–CSF flow interactions may be involved in glaucoma, and also note that ‘‘the CSF’s behavior is supposedly...
متن کاملBrain-wide pathway for waste clearance captured by contrast-enhanced MRI.
The glymphatic system is a recently defined brain-wide paravascular pathway for cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange that facilitates efficient clearance of solutes and waste from the brain. CSF enters the brain along para-arterial channels to exchange with ISF, which is in turn cleared from the brain along para-venous pathways. Because soluble amyloid β clearance dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCI insight
دوره 1 14 شماره
صفحات -
تاریخ انتشار 2016